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Summary
Background Comprehensive and in-depth research on the immunophenotype of septic patients remains limited, and
effective biomarkers for the diagnosis and treatment of sepsis are urgently needed in clinical practice.

Methods Blood samples from 31 septic patients in the Intensive Care Unit (ICU), 25 non-septic ICU patients, and
18 healthy controls were analyzed using flow cytometry for deep immunophenotyping. Metagenomic sequencing
was performed in 41 fecal samples, including 13 septic patients, 10 non-septic ICU patients, and 18 healthy
controls. Immunophenotype shifts were evaluated using differential expression sliding window analysis, and
random forest models were developed for sepsis diagnosis or prognosis prediction.

Findings Septic patients exhibited decreased proportions of natural killer (NK) cells and plasmacytoid dendritic cells
(pDCs) in CD45+ leukocytes compared with non-septic ICU patients and healthy controls. These changes statistically
mediated the association of Bacteroides salyersiae with sepsis, suggesting a potential underlying mechanism.
A combined diagnostic model incorporating B.salyersia, NK cells in CD45+ leukocytes, and C-reactive protein
(CRP) demonstrated high accuracy in distinguishing sepsis from non-sepsis (area under the receiver operating
characteristic curve, AUC = 0.950, 95% CI: 0.811–1.000). Immunophenotyping and disease severity analysis
identified an Acute Physiology and Chronic Health Evaluation (APACHE) II score threshold of 21, effectively
distinguishing mild (n = 19) from severe (n = 12) sepsis. A prognostic model based on the proportion of total
lymphocytes, Helper T (Th) 17 cells, CD4+ effector memory T (TEM) cells, and Th1 cells in CD45+ leukocytes
achieved robust outcome prediction (AUC = 0.906, 95% CI: 0.732–1.000), with further accuracy improvement
when combined with clinical scores (AUC = 0.938, 95% CI: 0.796–1.000).

Interpretation NK cell subsets within innate immunity exhibit significant diagnostic value for sepsis, particularly
when combined with B. salyersiae and CRP. In addition, T cell phenotypes within adaptive immunity are correlated
with sepsis severity and may serve as reliable prognostic markers.
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Research in context

Evidence before this study
Diagnosing and prognosticating sepsis in clinical practice
remains challenging due to the high heterogeneity among
septic patients. Previous studies have identified immune
dysregulation and alterations in gut microbiome as potential
factors influencing sepsis outcomes. However, comprehensive
studies integrating both immunophenotyping and gut
microbiome analysis to understand their combined impact on
sepsis diagnosis and prognosis are limited.

Added value of this study
Our study integrated advanced 11-color flow cytometry and
metagenomic sequencing to deliver a comprehensive analysis
of the immunological landscape and gut microbiome in septic
patients. We identified significant alterations in immune cell
subsets, particularly natural killer (NK) cells and plasmacytoid

dendritic cells (pDCs), which potentially mediated the
relationship between Bacteroides salyersiae and sepsis.
B. salyersiae, along with NK cells and C-reactive protein (CRP),
were identified as valuable diagnostic markers for sepsis. In
addition, we identified specific T cell subsets within adaptive
immunity that correlated with disease severity and predicted
patient outcomes when integrated with clinical scores.

Implications of all the available evidence
Our findings, combined with existing evidence, underscore
the importance of integrating immune and gut microbiome
analyses in sepsis management. By identifying key immune
markers and microbiome profiles, clinicians can more
accurately stratify patients and tailor interventions,
potentially improving outcomes and reducing mortality in
sepsis.
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Introduction
Sepsis is a life-threatening systemic infection charac-
terized by a dysregulated host response to infection,
resulting in multiple organ dysfunction and potential
mortality.1,2 However, despite the gravity of this disease,
diagnosing it remains a complex challenge due to its
variable presentation and the intricacies of the host’s
immune response. In 2017, an estimated 48.9 million
incident cases of sepsis were reported globally, with
approximately 11 million deaths, representing 19.7
percent of all global deaths.3 This staggering statistic
underscores the urgency in refining diagnostic methods
and prognostic tools. Although the immune system
plays a crucial role in the host’s defense against patho-
gens, its over-activation paradoxically worsens the dis-
ease.4 Pathogen replication within the bloodstream
results in the release of toxins and inflammatory cyto-
kines, which, in excessive amounts, may lead to tissue
injury and organ dysfunction, even though they initially
assist in containing the infection.4,5 A thorough under-
standing of the immunological disturbance in patients
with sepsis is indispensable for updating effective
diagnostic and prognostic strategies.

Sepsis is closely linked to the host immune response,
as it is caused by an uncontrolled inflammatory reaction
to infection.6 The immune response in sepsis is com-
plex: concurrent hyper-inflammation and immune
suppression affect various cell types and organ systems.
Moreover, the host immune state can change at
different stages of the disease, including the pivotal role
of immune subsets in modulating the systemic immune
response.7–9 For example, the research conducted by
Ahmed et al. elucidated that the CD45+ leukocytes are
modulated during sepsis in a manner that is both cell-
type-specific and stimulus-dependent.10 These immune
alterations serve as potential diagnostic markers,
enabling clinicians to distinguish sepsis from other
critical conditions in Intensive Care Unit (ICU) patients
and therefore facilitating earlier diagnosis.

Recent research has expanded our understanding of
sepsis pathogenesis beyond traditional immunological
frameworks. A Mendelian randomization study high-
lighted the potential regulatory role of the gut micro-
biome by revealing a bidirectional association between
gut microbiota composition and sepsis risk.11 While
specific bacterial taxa have been statistically associated
with sepsis, the interactions between the gut micro-
biome and the immune system may influence both
disease development and progression. Research has
shown that dysbiosis, or an imbalance in the gut
microbiota, can worsen sepsis by increasing toxin pro-
duction, amplifying the inflammatory response, and
compromising intestinal barrier function.12 Further-
more, these microorganisms produce metabolites, such
as short-chain fatty acids, that modulate immune cell
activity and can influence them through receptor in-
teractions.13 Therefore, investigating the interplay be-
tween microbiota and the immune system may facilitate
the identification of new biomarkers and therapeutic
targets.

To advance sepsis treatment, a deeper understanding
of the immunological mechanisms underlying the
condition is crucial. A 2023 review by Cajander et al. in
Lancet Respiratory Medicine emphasized the impor-
tance of profiling the dysregulated immune response in
sepsis.14 Particularly, blood transcriptomics, proved by
emerging evidence, has greatly enhanced our under-
standing of the host’s immune response in sepsis by
suggesting the association between distinct blood tran-
scriptional patterns and different clinical outcomes in
septic patients. This molecular-level understanding
largely complements current clinical practice that relies
heavily on disease severity scores such as Sequential
Organ Failure Assessment (SOFA) and Acute
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Physiology and Chronic Health Evaluation (APACHE) II
for prognostic evaluation. Actually, these severity scores
cannot fully predict patient outcomes alone. Clinical
observations reveal a discrepancy between these scores
and patient prognosis: some patients with lower scores
but impaired immunity still experience mortality, while
younger patients with stronger immunity, when given
appropriate treatment, may survive despite higher
SOFA scores at ICU admission. This discrepancy
highlights that the mechanisms associated with prog-
nosis in septic patients remains underexplored. By
identifying markers that accurately reflect immune sta-
tus, clinicians may better assess a patient’s capacity to
contain infection and determine their prognosis.

The present study aims to address the aforemen-
tioned research gap by examining the immune re-
sponses in septic patients. Traditional immunological
assessment methods provide a limited view of a pa-
tient’s immune function because they often fail to
capture the full spectrum of immune responses.
Therefore, we will employ six advanced 11-color flow
cytometry panels to comprehensively evaluate the
innate and adaptive immune responses in septic pa-
tients. By doing so, we aim to uncover immune
markers with the potential for clinical diagnosis and
prognosis prediction by deep immunophenotyping. In
addition, we further incorporated metagenomic to
preliminarily investigate the potential regulatory
mechanisms of sepsis immune phenotype, thereby
offering new scientific foundations and strategies for
diagnosing and treating sepsis.
Methods
Participants
This study is a prospective observational investigation
conducted in the ICU of Zhongshan Hospital, Fudan
University, from 2022 to 2023. The diagnosis of sepsis
was based on the Sepsis 3.0 definition,1 and all patients
were 18 years of age or older. To minimize the influence
of critical illness and the ICU environment, the non-
septic ICU group consisted of critically ill patients
admitted to the ICU for conditions not meeting the
diagnostic criteria for sepsis, such as major surgery,
hemorrhagic or cardiogenic shock, cerebral hemor-
rhage/stroke, seizures, and other non-septic critical ill-
nesses. Demographic factors, including age, sex, and
body mass index (BMI), were balanced between the
sepsis and non-sepsis groups to ensure comparability.
Both groups had similar APACHE II scores, indicating
comparable severity of illness. Furthermore, ICU pa-
tients with conditions that could confound immuno-
phenotypic analysis, such as organ or bone marrow
transplantation, high-dose corticosteroid treatment, or
autoimmune diseases, were excluded from the study.
Healthy participants were recruited from visitors
attending the Health Examination Center.
www.thelancet.com Vol 113 March, 2025
Sample collection and clinical parameter
acquisition
Peripheral blood was collected from all participants,
with clinical data abstracted from electronic medical
records for inpatients. APACHE II scores were calcu-
lated from data gathered within the first 48 h of ICU
admission. Blood samples from both sepsis and non-
sepsis groups were collected within 48 h of ICU
admission, and fecal samples were obtained before
antibiotic administration when available; if the patient
did not have a bowel movement before antibiotic
administration, the fecal sample was considered
missing. Healthy participants provided both blood and
fecal samples. Clinical and demographic data were
collected at enrollment. Patient survival vs. mortality
was followed for 28 days after entry into the study or
until hospital discharge, whichever occurred first.

Sample preservation
Peripheral blood was collected in sodium heparin tubes
(BD, catalog no. 367874) and processed within 24 h at
room temperature. Fecal samples, collected from ICU
patients (both sepsis and non-sepsis) and healthy con-
trols, were stored immediately at −80 ◦C until processing.

Blood sample treatment
Six standardized 11-color flow cytometry panels were
developed to perform deep immunophenotyping of
human whole blood.12 The details were as follows:

Panel design for flow cytometry
Innate immune cell subsets were identified in panel 1,
including neutrophils (CD15+ CD16+), eosinophils
(CD15+ CD16−), basophils (lineage− HLADR− CD123+),
myeloid dendritic cells (mDCs, lineage− HLADR+CD11-
chigh CD123−/low), plasmacytoid dendritic cells (pDCs,
lineage− HLADR+ CD11c− CD123high), classical mono-
cytes (CD14high CD16−), intermediate monocytes
(CD14high CD16+), and non-classical monocytes (CD14−

CD16+). The expressions of CD64, CD86, CD38, and
HLADR can be evaluated to determine the activation state
of the granulocytes, monocytes, and dendritic cells (DCs).

In panel 2, unconventional T cells and natural killer
(NK) cells were identified. The mucosal-associated
invariant T (MAIT) cells were identified by their
CD161+ TCR Vα7.2+ phenotype in total T cells (CD3+)
and αβ cells. A gating strategy was applied to identify NK
cells as CD3− NKp46+ and classify them into early NK,
effector NK, and terminal NK by CD16 and CD56.
Additional two activating receptors (NKG2D and
NKp46) distribution among different NK cell subsets
were also evaluated.

T cell subsets were identified in panel 3–5. CD4+

helper T (Th) cells were distinguished into Th1
(CXCR3+ CCR4− CCR6−), Th2 (CXCR3− CCR4+ CCR6−),
Th9 (CCR4− CCR6+), Th17 (CXCR3− CCR4+ CCR6+),
and Th17Th1 (CXCR3+ CCR4− CCR6+). CD8+ cytotoxic
3
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T (Tc) cells were also identified based on the expression
of CXCR3, CCR4, and CCR6 like Th cells. The regula-
tory T cells (Tregs) were identified by their CD25high

CD127−/low phenotype on CD4+ T cells. T cells at
different stages of maturation were gated by CD45RA,
CCR7, CD95. The expression of activation markers
(CD69, CD28, HLADR, CD38) and inhibitory receptors
(CD85j, PD-1, CD57) were used to determine the
functional status of T cell subsets.

CD19 and CD20, two B cell pan markers were used
to identified total B cells in panel 6. CD11c+ B cells were
regarded as memory B. Immunoglobulin (Ig) D, CD27,
CD38, and CD24 were used to distinguish CD27+

memory B cells, naïve B cells, transitional B cells, and
founder B cells. Plasmablasts, plasma cells, and class-
switched B cells were identified from IgD− IgM− B cells.

All antibodies for flow cytometric determinations
were purchased from BioLegend and BD Biosciences
(San Diego, CA, USA). Details were provided in
Table S2.

Surface labeling for flow cytometry
Prior to staining, fluorescent antibody cocktails for each
panel were pre-mixed in Stain buffer (PBS with 2% fetal
bovine serum). Three staining protocols were used.

Staining Protocol 1: For panels 1, 2, 3, and 4, 100 μL
of whole blood was incubated with 20 μL of antibody
cocktails in 5 mL 12 × 75 mm polypropylene tubes at
room temperature (RT, 20–25 ◦C) in the dark for 15 min
2 mL 1 × BD FACS Lysing Solution (BD Biosciences,
catalog no. 349202) per tube was added and incubated at
RT in the dark for 15 min. The lysed samples were
centrifuged and washed once with 2 mL phosphate-
buffered saline (PBS, Wisent, catalog no. 311-010-CL)
at 500 g for 5 min at RT. Discard the supernatant and
resuspend in a final volume of 250 μL 1% para-
formaldehyde (PFA, Sangon Biotech, catalog no.
A500684-0500). Store at 2–8 ◦C and protect from light
until acquisition.

Staining Protocol 2: For panel 5, chemokine receptor
antibody cocktails were first incubated at 37 ◦C in the
dark for 15 min before being stained with surface
antibody cocktails at RT for 15 min. The samples were
then lysed, washed, and resuspended as described in
Protocol 1, and store at 2–8 ◦C until acquisition.

Staining Protocol 3: For panel 6 (B cells panel), red
blood cell lysis was performed first to minimize the ef-
fects of secreted immunoglobulins. After lysis and
washing, 120 μL of antibody cocktails were added and
incubated at RT in the dark for 15 min. Samples were
washed and resuspended as described above, store at
2–8 ◦C, and protected from light until acquisition.

Sample loading and immune data acquisition
200 μL fixed cell suspension were collected for each
sample on a five-laser Beckman Coulter CytoFLEX LX
(Beckman Coulter, catalog no. C00446). Eight-peaks
Rainbow Calibration Particles (Spherotech, catalog no.
RCP-30-5A) and Anti-Mouse Ig, κ/Negative Control
Compensation Particles (BD, catalog no. 552843) were
used for instrument setup. Acquired data was analyzed
using CytExpert_v2.4 (Beckman Coulter) and Flow-
Jo_v10.8.1 (BD).

Immunophenotypes included the percentage of im-
mune subsets in CD45+ leukocytes and parent population
(the upper level of the logical gating), and the median
fluorescence intensity (MFI). The counts of immune
subsets were calculated by combining the percentage of
CD45+ leukocytes with the white blood cell counts (WBC)
measured by clinical routine blood tests.

Fecal sample treatment
DNA extraction and metagenomic sequencing
Total microbial genomic DNA from fecal samples was
extracted using the TIANamp Stool DNA kit (TIAN-
GEN, catalog no. GDP328-02). Metagenomic DNA
samples were used to create Illumina sequencing li-
braries using the Tn5 DNA Library Prep Kit for Illumina
(APExBIO, catalog no. K1802), followed by sequencing
on the Illumina Novaseq6000 platform (2 × 150 base
pairs). Quality control was conducted using KneadData
(version 0.10.2), Trimmomatic (version 0.39),15 and
Bowtie2 (version 2.4.4).16 Trimmomatic removed trim-
med small non-human reads, while Bowtie2 filtered out
human reads and rDNA reads by aligning them to the
human reference genome (GRCh37) and SILVA 128
database. After quality control, an average of 64.7
million high-quality reads were obtained per sample,
totaling approximately 9.6 GB of data.

Profiling of microbial taxa and functional potential
Taxonomic profiles were determined using MetaPhlan
(version 3.0.13) with clade-specific marker genes.17 The
analysis was restricted to 135 species with a prevalence
of at least 10% and a relative abundance of no less than
0.01%. Concurrently, functional profiles were executed
with HUMAnN version 3.0.0, focusing on MetaCyc
pathways and Enzyme Commission gene families
(ECs).18 The same filtering criteria as for microbial
species were applied, resulting in the identification of
368 functional pathways and 1421 ECs.

Statistical analysis
Clinical characterization
The continuous variables were expressed as means and
standard deviations, and Mann–Whitney U-tests were
used to compare differences. The categorical variables
were expressed as frequencies and percentages, and
compared via Fisher’s exact test. All results are shown in
Table S1.

Multi-omics data
The Mann–Whitney U test was used to compare two
groups by using the wilcox.test function in the R
www.thelancet.com Vol 113 March, 2025

http://www.thelancet.com


Articles
package stats (v4.4.1), while for comparisons among
three groups, Kruskal–Wallis test followed by Dunn’s
post hoc test with P value adjustment for pairwise
comparisons was employed, using the kwAllPairs-
DunnTest function in the R package PMCMRplus
(v1.9.12). All statistical tests were two-sided. All multiple
comparisons were adjusted using the Benjamini-
Hochberg method and an FDR below 0.20 was consid-
ered significant, consistent with previous studies.19 The
results of the single hypothesis testing were presented
using nominal P values, with a P value of less than 0.05
was considered statistical significance. Effect size was
used to measure the magnitude of the differences, and
estimated by dividing the difference between estimated
population means by the s.d. of control. Differential
abundance analysis of metagenomic features was per-
formed using Microbiome Multivariable Association
with Linear Models (MaAsLin2, v1.14.1),17 while alpha
and beta diversity were assessed using the Shannon
index and Bray–Curtis dissimilarity, respectively.

Spearman’s rank correlation coefficient was utilized
for correlation analysis to explore the relationships be-
tween metagenomic features, immune responses, and
the clinical status of sepsis.18 Mediation analysis was
conducted to investigate the potential mediation effects
among these variables using two regression models to
estimate the indirect and direct effects, as implemented
by the mediate function in the R package mediation
(v4.5.0).20 The mediator model on the associations be-
tween immune responses and independent variable
(metagenomic features). The outcome model on the
associations between outcome (sepsis) and both medi-
ator (immune responses) and independent variable
(metagenomic features). Bootstrapping procedures with
1000 Monte Carlo simulations were employed to esti-
mate the proportional mediation effects. The diagnostic
model included the most significant indicators of
immunophenotypes, metagenomic phenotypes and
clinical phenotypes. The Differential Expression Sliding
Window Analysis (DE-SWAN) approach was employed
to elucidate the dynamics of immunophenotypic alter-
ations during hospitalization.21 Survival analysis was
conducted using Kaplan–Meier curves, and the signifi-
cance of the differences between curves was determined
using the log-rank test. A random forest model for
sepsis-related mortality was developed using a random
forest approach, with key immunophenotypic features
identified through the Least Absolute Shrinkage and
Selection Operator (LASSO) regression.22 The model’s
predictive performance was evaluated using the area
under the receiver operating characteristic (ROC) curve
(AUC). All statistical analyses were conducted using R
(v4.3.1) and RStudio (v2023.09.0–463).

Ethics approval
All recruitment, informed consent, and study proced-
ures were approved by the Ethics Research Board of
www.thelancet.com Vol 113 March, 2025
Zhongshan Hospital (Approval Number: B2022-107R).
All participants or their legal representatives provided
informed consent before joining the study.

Role of funders
The funders had no role in study design, data collection,
data analyses, interpretation, or writing of this manu-
script. All authors have full access to the data in the study
and accept responsibility to submit for publication.
Results
Infection and inflammation were exhibited in
sepsis
In our study, 31 septic patients, 25 non-septic ICU pa-
tients, and 18 healthy controls were enrolled. Compared
with non-septic patients, septic patients had a similar
distribution of age, gender, and BMI, as well as overall
disease severity based on APACHE II scores, except for
more pronounced organ failure according to SOFA
scores (Table S1). Consistent with our expectation,
septic patients exhibited elevated levels of procalcitonin
(PCT), C-reactive protein (CRP), and neutrophil/
lymphocyte ratios (NLR) compared with healthy controls
or non-septic ICU patients, which indicated a bacterial
infection profile (Fig. 1b, Table S1). All ICU patients,
especially those with sepsis, demonstrated increased
WBC and NLR, which suggested hyperinflammation.

Reduction of lymphocyte and reconfiguration of
T cells reveal immunosuppression in sepsis
Compared with healthy controls, ICU patients demon-
strated an increase in the relative percentage of neu-
trophils through a flow cytometric analysis of 74 whole
blood samples (Fig. 1c, Fig. S2a). Immune cell subset
comparisons revealed a greater disparity between sepsis
and healthy controls than between non-sepsis and
healthy controls (Fig. 1d), which indicated significant
changes in immune cell composition in patients with
sepsis.

The analysis of immune cell composition in sepsis
revealed significant disruptions, particularly within
lymphocyte subsets. Septic patients exhibited remark-
able reductions in dendritic cells, basophils, and B cells
compared with healthy controls (Fig. 1e, Fig. S2b),
which highlighted impairments in both innate and
adaptive immune responses. The differentiation and
activation of CD8+ T cells were notably suppressed, as
indicated by an increased proportion of naïve CD8+

T cells (CD8+ TN, CD45RA+ CCR7+ CD95−) and a
decreased proportion of effector CD8+ T cells (CD8+ TE,
CD45RA+ CCR7−) (Fig. 1f). Additionally, activated CD8+

T cells (CD8+ TAct, HLADR+ CD38+) showed increased
expression of PD-1 (Fig. 1g). An imbalance in the dis-
tribution of Th1 and Tregs within CD4+ T cell pop-
ulations was also observed (Fig. 1h), characterized by a
decrease in pro-inflammatory Th1 cells and an increase
5
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Fig. 1: Study design and immune cell profiles. (a) Schematic representation of the experimental workflow created with BioRender.com. (b) A
comparative analysis of key clinical parameters, including PCT concentration, WBC count, and NLR across three groups (sepsis, n = 31; non-
sepsis, n = 25; healthy, n = 18). FDR values shown in the graphs were calculated using Kruskal–Wallis test followed by Dunn’s post hoc test
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in anti-inflammatory Tregs (Fig. S2c). These findings
together underscore the immunosuppressive state in
sepsis, showing its characteristics of having a reduction
in lymphocyte subsets and a reconfiguration of T cell
subpopulations towards a functionally inhibited profile.

Sepsis and non-sepsis in ICU can be discriminated
by NK cells and pDCs
The critical alterations in DCs and NK cells were
revealed by the analysis of CD45+ leukocyte subsets
underscored immune dysregulation in septic patients
(Fig. 2a). The reduction observed in both the pro-
portions and absolute counts of NK and DCs subsets—
including effector NK cells, early NK cells, pDCs, and
mDCs (Fig. 2a and b, Fig. S2d)—pointed to a significant
disruption in immune homeostasis. Moreover, the
decreased expression of HLA-DR on pDCs and NKp46
on NK cells (Fig. 2c and d) highlighted the impaired
functional capacity of innate immunity in sepsis. These
findings emphasized that a compromised innate im-
mune landscape in septic patients may contribute to
their heightened susceptibility to infection and poor
immune responsiveness.

In order to evaluate whether these indicators have
clinical application value, ROC analysis was conducted
to assess the diagnostic accuracy of immune cell phe-
notypes for distinguishing sepsis in ICU patients
(Fig. 2e). The analysis revealed that the proportions of
total NK cells and effector NK cells within CD45+ leu-
kocytes achieved robust diagnostic performance as
demonstrated by an AUC of 0.861 (95% CI:
0.753–0.968). Similarly, early NK cells also showed
high discriminatory power with an AUC of 0.849 (95%
CI: 0.743–0.955). However, conventional infection
markers, including CRP, PCT, and WBC, exhibited
lower diagnostic efficacy. Notably, even the SOFA
score, a widely used clinical assessment tool, yielded a
comparatively modest AUC of 0.620 (95% CI:
0.535–0.705). Our results suggest that these immune
cell markers, particularly NK cell subsets, may serve as
more accurate and precise biomarkers compared with
traditional clinical indicators, thereby highlighting
their promise for improving sepsis diagnosis in clinical
settings.
with Benjamini-Hochberg adjustment. (c) The relative stacked percentag
n = 31; non-sepsis, n = 25; healthy, n = 18). (d) Inter-individual variability
contrasting septic patients (n = 31) against healthy controls (n = 18) and n
calculated by Mann–Whitney U-test. (e) Comparison of immune feature
groups. Each dot represents one immunological feature; colors represent
represent features showing significant differences between the sepsis (n =
represent features with significant differences between the sepsis (n = 31
Whitney U-test with Benjamini-Hochberg adjustment, and differences we
alterations of T cell subsets across three groups (sepsis, n = 31; non-sep
calculated using Kruskal–Wallis test followed by Dunn’s post hoc test wi
blood cell; NLR, neutrophil-to-lymphocyte ratio; FDR, false discovery rate
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Combination of Bacteroides salyersiae, NK cells and
CRP serve as an adjunctive tool for clinical
diagnosis of sepsis
Metagenomic sequencing was employed to analyze the
taxonomic and functional profiles of the gut microbiota
in different populations across different groups
(Fig. 3a), including 18 healthy controls, 10 non-septic
ICU patients, and 13 septic patients. When compared
with healthy individuals, both septic and non-septic ICU
patients exhibited significantly reduced bacterial alpha
diversity in the gut, and different microbial composition
(Fig. 3a and b). The phylum-level distribution of gut
microbiota was illustrated in Fig. 3c.

The MaAsLin2 analysis revealed differences in the
abundance of four microbial species and their associ-
ated functional pathways between septic and non-septic
ICU patients (Fig. 3d). Compared with healthy controls
and non-septic ICU patients, septic patients exhibited
significant alterations in 52 species from four phyla and
61 functional pathways, associated with immune sig-
natures (Figs. S3 and S4).

Clostridium clostridioformeand and Faecalibacterium
prausnitzii were enriched in non-sepsis, while
B. salyersiae and Enterococcus faecium were more abun-
dant in sepsis. Nine functional pathways associated with
sepsis were identified (Fig. 3e), with the gut microbiome
of sepsis showing a shift towards enhanced purine
nucleotide and unsaturated fatty acid biosynthesis yet
reduced glycogen and L-arginine biosynthesis.
B. salyersiae and E. faecium contributed to these sepsis-
enriched pathways (Fig. 3e).

B. salyersiae and the purine nucleotide biosynthesis
pathway were negatively correlated with NK cell pro-
portion and the HLADR expression on DCs (Fig. 3e and
f). In addition, NK cell proportion and HLADR on pDCs
statistically mediated the association between meta-
genomic profiles and sepsis (Fig. 3g, Fig. S5), which
suggested a consistent finding with previous studies
that dysbiosis in microbiota may trigger sepsis and lead
to peripheral immune system dysregulation.23

We investigated the association of the combined
metagenomics and immune responses with sepsis. The
most significant indicators of sepsis were B. salyersiae
from the metagenomic profiles (Fig. S6), NK cells
e of 9 cell populations in 74 blood samples sorted by group (sepsis,
in immune cell composition is quantified using Aitchison’s distance,
on-septic patients (n = 25) against healthy controls (n = 18). P values
s derived from each leukocyte subpopulation between experimental
the leukocyte compartment. Dots above the horizontal dashed line
31) and healthy (n = 18). Dots to the right of the vertical dashed line
) and non-sepsis (n = 25). The FDR values were calculated by Mann–
re considered significant when FDR <0.20. (f–h) Boxplots display the
sis, n = 25; healthy, n = 18). FDR values shown in the graphs were
th Benjamini-Hochberg adjustment. PCT, Procalcitonin; WBC, white
.
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Fig. 2: Distinguishing immune features between septic and non-septic patients. (a) Comparisons of immune subsets between sepsis
(n = 31) and non-sepsis (n = 25), as well as between sepsis (n = 31) and healthy participants (n = 18). Statistical analysis was conducted using
Mann–Whitney U-test with Benjamini-Hochberg adjustment, and significance is denoted by red for FDR <0.20, with grey indicating FDR
≥0.20, and the size of the point corresponds to -Log10 (FDR). (b) Frequencies of NK cells and DCs across three groups (sepsis, n = 31; non-
sepsis, n = 25; healthy, n = 18). FDR values shown in the graphs were calculated using Kruskal–Wallis test followed by Dunn’s post hoc test
with Benjamini-Hochberg adjustment. (c) Heatmap showing the log2FC in the MFI of functional markers on NK cells and DCs. Mann–
Whitney U-test with Benjamini-Hochberg adjustment was used for comparisons between sepsis (n = 31) and non-sepsis (n = 25) or
healthy (n = 18). (d) Boxplots displaying the alterations of MFI of HLADR on DCs and NKp46 on early NK cells across three groups (sepsis,
n = 31; non-sepsis, n = 25; healthy, n = 18). FDR values shown in the graphs were calculated using Kruskal–Wallis test followed by Dunn’s
post hoc test with Benjamini-Hochberg adjustment. (e) ROC analysis shows the performance of immune phenotypes and clinical parameters
in differentiating septic patients from non-septic patients. FDR, false discovery rate; NK, natural killer; DC, dendritic cells; FC, fold change;
MIF, median fluorescence intensities; HLADR, human leukocyte antigen-DR; ROC, receiver operating characteristic. *FDR <0.20; **FDR <0.05;
***FDR <0.01.
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within CD45+ leukocytes from the immunophenotypes
(Fig. 2e), and CRP as a clinical biomarker (Fig. 2e) based
on single analysis. Notably, the model integrating all
three indicators demonstrated superior discriminative
power (AUC = 0.950, 95% CI: 0.811–1.000, Fig. 3h)
compared with each indicator alone or paired combi-
nation (all AUC <0.875), which suggested that the onset
of sepsis is linked to the dysregulation of multiple
physiological systems.

The immunosuppressive phenotypes of sepsis
contribute to the subtyping of septic patients
To assess the clinical relevance of immune cell pheno-
types in sepsis, we performed Spearman’s correlation
analysis to examine their relationship with APACHE II
and SOFA scores. The results revealed significant corre-
lations, highlighting the profound impact of sepsis
severity on immune dynamics. For APACHE II scores,
lymphocyte subsets, including Th1 cells and CD8+ T
cells, demonstrated a significant negative correlation
(Fig. S7a), whereas the proportion of Tregs within CD4+

T cells showed a positive correlation. Similarly, for SOFA
scores, a reduction in Tc2 and Th2 cell proportions was
associated with higher scores (Fig. S7a), suggesting that
sepsis-induced immunosuppression becomes more pro-
nounced as the severity of sepsis increases. These find-
ings underline the dynamic shift in immune cell
behavior with worsening clinical outcomes.

To further quantify the relationship between im-
mune phenotypes and sepsis severity, DE-SWAN was
employed to evaluate the correlations with APACHE II
scores (Fig. 4a) and SOFA scores (Fig. S7b). We iden-
tified a threshold APACHE II score of 21 as a critical
point marking substantial immune phenotype alter-
ations and a significant shift in immune cell behavior. If
their APACHE II scores were ≥21, the patients were
classified as severe sepsis cases (n = 12), while those
with scores <21 were categorized as mild sepsis (n = 19).
Results showed that severe sepsis, as indicated by an
APACHE II score ≥21, was associated with a signifi-
cantly higher mortality rate (75% vs. 26%, P = 0.012;
Fig. 3: Metagenomic features of septic patients and their association w
bacterial alpha diversity (Shannon index) at the species level among hea
patients (n = 13). FDR values shown in the graphs were calculated using
Hochberg adjustment. (b) The scatter plot displaying the beta diversity am
Bray–Curtis distance. The P value indicates the PERMANOVA significanc
phylum-level distribution of gut microbiota across different samples (seps
data. (d) Phylogenetic tree of key microbial species. The middle heatmap
healthy controls (n = 18), non-septic ICU patients (n = 10), and septic pat
letters. The outer rings indicate the prevalence of each microbial species
species to microbial functional pathways associated with sepsis (FDR-adjus
metagenomic features and immune signatures. (f) The key enzymes within
immune signatures (right). (g) Mediation analysis of immune signatures
proportions of mediation are shown in the center. (h) The effect of mult
model. PERMANOVA, permutational multivariate analysis of variance; M
*FDR <0.20; **FDR <0.05; ***FDR <0.01.
Fig. 4b) and a greater incidence of septic shock (83% vs.
21%, P = 0.001; Fig. S7c). Furthermore, patients with
severe sepsis exhibited significantly reduced survival
rates, both at 28 days (P = 0.0095; Fig. 4c) and during
their hospital stay (P = 0.032; Fig. S7d).

Peripheral blood leukocyte subset analysis further
demonstrated that patients with severe sepsis had
significantly reduced lymphocyte proportions, including
NK cells, T cells, and B cells, particularly in those with
poor prognoses (Fig. 4d). The percentage of lympho-
cytes among CD45+ cells (Fig. 4e) and the absolute
lymphocyte counts (Fig. S7e) were notably lower in se-
vere septic patients, which underscored that lympho-
penia may help to predict sepsis severity.

In addition, we evaluated immune cell subset pro-
portions and ratios to capture changes in immune
function. In severe septic patients, we observed a sig-
nificant decrease in the Th1 to Treg ratio, suggesting a
shift toward reduced inflammation and enhanced im-
mune suppression (Fig. 4f and g). Moreover, the NLR
was also significantly elevated in severe sepsis, despite
similar neutrophil levels between mild and severe cases
(Fig. S7f), which further highlighted the immune dys-
regulation in severe sepsis.

Immunophenotypes associated with sepsis severity
enhance the predictive accuracy of clinical scores
for prognosis
Our analysis revealed that the immune profiles of pa-
tients with severe sepsis closely resemble those of poor
outcomes. To further assess the prognostic value of
immune phenotypes in sepsis, we selected ten immune
indicators that exhibited significant differences between
severe and mild septic patients based on effect size
(Fig. 5a). We applied LASSO regression to select vari-
ables from these ten indicators, retaining only those
selected in at least 800 out of 1000 regression iterations
(Fig. S8a). Ultimately, four immune indicators—lym-
phocytes in CD45+ cells, Th17 cells in CD45+ cells,
CD4+ TEM cells in CD45+ cells, and Th1 cells in CD45+

cells—were selected to construct an immune model for
ith immune signatures. (a) The violin plot indicating differences in
lthy controls (n = 18), non-septic ICU patients (n = 10), and septic
Kruskal–Wallis test followed by Dunn’s post hoc test with Benjamini-
ong samples (sepsis, n = 13; non-sepsis, n = 10; healthy, n = 18) using
e for intergroup comparisons. (c) Stacked bar plots illustrating the
is, n = 13; non-sepsis, n = 10; healthy, n = 18) based on metagenomic
shows the MaAsLin2 analysis results for the microbial species among
ients (n = 13). The four key sepsis-associated species are marked with
. (e) The horizontal bar plot (left) showing the contribution of key
ted P < 0.2). The heatmap (right) denoting associations between key
the pathways of purine biosynthesis (left) and their association with
on the association between metagenomic features and sepsis. The
i-omics indicators on diagnosis of sepsis evaluated by random forest
aAsLin2, Microbiome Multivariable Association with Linear Models.

www.thelancet.com Vol 113 March, 2025

http://www.thelancet.com


Fig. 4: Distinguishing immune features between septic and non-septic patients. (a) The number of immune features significantly changed
by the APACHE II score. DE-SWAN identified a local peak at an APACHE II score of 21, which facilitated the classification of septic patients into
Mild (n = 19) and Severe (n = 12). (b) Column diagram displaying the mortality rate of septic patients in Mild (n = 19) and Severe (n = 12). P
value was calculated by Fisher’s exact test. (c) Kaplan–Meier 28-day survival curves for Mild (n = 19) versus Severe (n = 12) cases. P value is based
on the log-rank test. (d) Volcano plot and heatmap revealing the differential proportions of immune cell subsets within CD45+ leukocytes
between Mild (n = 19) and Severe (n = 12) patients. Significance was determined by Mann–Whitney U-test with Benjamini-Hochberg
adjustment. Blue indicates depleted immune subsets, with the gray horizontal dashed line denoting a cutoff FDR of <0.20. (e) Quantifica-
tion of lymphocyte count between mild (n = 19) and severe (n = 12) samples. P value was calculated by Mann–Whitney U-test. (f) Volcano plot
and heatmap showing differential proportions of immune cell subsets within their parent populations and ratio values between Mild (n = 19)
and Severe (n = 12). Significance was determined by Mann–Whitney U-test with Benjamini-Hochberg adjustment. Blue and red indicate
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predicting 28-day mortality in septic patients (Fig. 5b).
Moreover, clinical scores such as APACHE II and SOFA
were found to correlate with patient prognosis, with
higher scores in deceased patients and lower scores in
those who survived (Fig. 5c).

A random forest model was subsequently developed
using 60% of sepsis patient data for training and the
remaining 40% for validation. The results demonstrated
that all four immune indicators outperformed clinical
scores in predicting sepsis outcomes, with the propor-
tion of lymphocytes in CD45+ cells exhibiting the
highest AUC of 0.810 (95% CI: 0.652–0.967) (Fig. S8b).
The inclusion of the four key immune indicators
significantly improved the accuracy of prognosis pre-
diction, achieved an AUC of AUC of 0.906 (95% CI:
0.732–1.000) (Fig. 5d), and was further enhanced when
combined with clinical scores (AUC = 0.938, 95% CI:
0.796–1.000). The ranking of these six indicators in the
combined model emphasized the importance of im-
mune phenotypes in predicting sepsis prognosis
(Fig. 5e). Notably, the combined model was able to
predict sepsis mortality that cannot be captured by
clinical scores alone. For instance, despite an APACHE
II score indicating mild sepsis, the composite model
that incorporated both immune indicators and clinical
scores, successfully predicted mortality (Fig. 5f). This
finding underscores the necessity of combining im-
mune phenotypes with clinical scores for a more
comprehensive assessment of sepsis prognosis.
Discussion
The current study investigated the relationship between
peripheral blood immune cell characteristics, gut
microbiota disturbance, and sepsis in adult ICU patients
through a comparison with non-septic critically ill pa-
tients or healthy controls by integrating high-throughput
flow cytometry and metagenomic sequencing. We
characterized distinctive patterns of immune dysregu-
lation in septic patients, including increased neutrophil
counts (neutrophilia), decreased lymphocyte pop-
ulations (lymphopenia), substantial remodeling of T cell
subsets, reduced NK cell frequencies, and diminished
HLADR expression on myeloid cells. These immune
disturbances not only statistically mediated the associa-
tion between gut microbiota alterations and sepsis, but
also more importantly, demonstrated higher diagnostic
accuracy and prognostic value compared with conven-
tional clinical markers.

Consistent with previous studies, our findings further
support the simultaneous occurrence of excessive
depleted and increased immune subsets, respectively, with the gray ho
showing the Th1 to Tregs ratio, exhibiting significant differences between
Mann–Whitney U-test. APACHE, Acute Physiology and Chronic Health Ev
FDR, false discovery rate; Th, Helper T.
inflammation and immune suppression in sepsis.24–27

Compared with controls, septic patients exhibited
remarkably elevated levels of CRP, WBC, neutrophil
counts, and NLR, which indicated a pronounced organ
damage in sepsis.28,29 In contrast, a significant reduction
in the number and proportion of most immune cell
populations was observed, excluding neutrophils, with
lymphocytes being particularly diminished. Additionally,
the expression of HLADR on monocytes and DCs was
significantly downregulated, while the proportion of
Tregs was markedly increased. Furthermore, the upre-
gulation of PD-1, a marker associated with immune cell
exhaustion,30 was evident in a greater proportion of T
cells. Overall, our study highlights the distinct immuno-
logical dysregulation in septic patients, and characterizes
it by a neutrophil-driven hyperinflammatory response
and concurrent immune suppression, particularly in
non-neutrophilic cell subsets.

Interestingly, our study observed a downregulation
of NKp46 and NKG2D expression on NK cells, a finding
that aligns with the results of Chiche et al. that impaired
NK cell cytotoxicity and reduced expression of NKp30
and NKp46 in septic patients.31 As key components of
the innate immune system, NK cells play a crucial role
in the early immune response to pathogen invasion,32

which underscores their potential as diagnostic
markers for sepsis in its initial stages. Our data support
this hypothesis and demonstrate that NK cell subsets
exhibited higher diagnostic accuracy for distinguishing
ICU patients with sepsis from non-sepsis individuals
when compared with current clinical biomarkers such
as CRP, PCT, and the SOFA score.

As a proof-of-concept study, our data demonstrate
that immune phenotyping could serve as a complement
to existing scoring systems like SOFA and APACHE II,
aiding clinicians in identifying high-risk patients. By
providing immunological candidate markers for con-
ducting adjunctive diagnostic tests and identifying a key
point in the variation of immune profiles with disease
severity, our study may guide the initiation and de-
escalation of antibiotic therapy. This finding is consis-
tent with the perspective of Parlato and Cavaillon, who
found that host response markers may help to guide
antibiotic treatment and reduce resistance.33 By
leveraging the diagnostic power of these combined
markers, clinicians can make more informed decisions,
which may ultimately lead to improved patient out-
comes and antimicrobial stewardship.

Our findings reveal that immune phenotypes provide
crucial complementary information for patient stratifi-
cation and outcome prediction, though clinical severity
rizontal dashed line denoting a cutoff FDR of <0.20. (g) Boxplots
Mild (n = 19) and Severe (n = 12) samples. P value was calculated by
aluation; DE-SWAN, Differential expression sliding window analysis;
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Fig. 5: Construction of prognostic models by immunophenotypes and clinical scores. (a) Top ten indicators identified by effect size between
Mild (n = 19) and Severe (n = 12) cases. (b) 4 indicators without multicollinearity are strongly associated with fatality in sepsis by LASSO
regression analysis. (c) The trends of APACHE II and SOFA scores during ICU admission among septic patients with different prognoses (Fatality,
n = 7; Survivor, n = 9). P values were calculated by paired Mann–Whitney U-test. (d) Performance of the random forest models showed the
highest prognostic accuracy in testing set (n = 12) when combined immunophenotypes and clinical scores evaluated by AUC. (e) Ranking of the
importance of included indicators in the combination model. (f) The confusion matrix of the combination model. LASSO, Least Absolute
Shrinkage and Selection Operator; APACHE, Acute Physiology and Chronic Health Evaluation; SOFA, Sequential Organ Failure Assessment; ICU,
Intensive Care Unit; AUC, the area under the receiver operating characteristic curve.

Articles
scores such as SOFA and APACHE II remain funda-
mental tools for prognostic evaluation in sepsis,
providing an alternative to address the challenge of lack
of accuracy in predicting sepsis outcomes in current
clinical practice.34,35 Through comprehensive immune
profiling, we identified four key immune indicators that
significantly enhance prognostic accuracy when com-
bined with traditional clinical scores, which are
lymphocyte proportion in CD45+ cells, Th17 cells in
CD45+ cells, CD4+ TEM cells in CD45+ cells, and Th1
www.thelancet.com Vol 113 March, 2025
cells in CD45+ cells, respectively. The combination of
immune parameters and clinical severity scores in the
assessment enables clinicians to identify high-risk pa-
tients who might be overlooked by traditional scoring
systems alone, which is particularly crucial for patients
with seemingly mild clinical scores yet compromised
immune function, because they may require more
intensive monitoring and aggressive therapeutic in-
terventions. Moreover, this integrated approach pro-
vides a more nuanced understanding of sepsis
13
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heterogeneity, potentially guiding personalized treat-
ment strategies based on both clinical severity and im-
mune status.

In addition, we found consistently increased CCR7
expression on CD4+ and CD8+ T cells in patients with
sepsis, as evidenced by the increased proportion of naïve
T cells (CCR7+ CD45RA+ CD95−). This finding suggests
potential alterations in T cell trafficking in septic pa-
tients. The ingress and egress of lymphocytes from
lymph nodes to the bloodstream are tightly controlled by
cell-intrinsic clock genes and extrinsic glucocorticoids
through the regulation of chemokine receptor CCR7
expression.36–38 According to recent studies, the observed
increase in CCR7 expression and the proportion of naïve
T cells in septic patients may result from dysregulation
of the hypothalamic-pituitary-adrenal (HPA) axis and
elevated free cortisol levels, which could induce CCR7
expression, promote T cell redistribution, and
contribute to lymphopenia.39,40 However, they did not
directly investigate the underlying mechanisms
responsible for the increased CCR7 expression in septic
patients, entailing further research of the contributive
factors such as the potential role of the HPA axis,
cortisol levels, and other immunomodulatory pathways.
Future studies should focus on elucidating the precise
mechanisms driving the observed alterations in T cell
trafficking and their implications for sepsis-related im-
mune dysfunction.

Our study introduces immune profiling as a poten-
tial diagnostic tool for sepsis by offering easily detectable
biomarkers with significant clinical implications. Spe-
cifically, we observed a significant decrease of NK cells
in CD45+ leukocytes, which supports the idea that NK
cell subsets may serve as more accurate diagnostic
markers for sepsis than current clinical biomarkers such
as CRP, PCT, and the SOFA score. Additionally, we
integrated immune phenotyping with clinical scoring
systems to classify sepsis severity, demonstrating its
potential to complement SOFA and APACHE II scores.
Furthermore, we identified key T cell subsets that pre-
dict sepsis prognosis, offering valuable insights beyond
traditional severity scores. By combining immune
profiling with clinical scores, we can better stratify pa-
tients, particularly by providing patients who have mild
clinical scores yet impaired immune function with more
personalized treatment strategies.

Furthermore, this study uniquely associates periph-
eral blood immunophenotypes with metagenomic fea-
tures in sepsis, offering preliminary insights into the
potential biological significance of their interactions.
Our findings suggest that NK cell subsets statistically
mediate the relationship between B. salyersiae and
sepsis, implying possible mechanisms underlying
sepsis pathogenesis and identifying potential targets for
intervention. As growing evidence indicates a bidirec-
tional interplay between the immune system and gut
microbiota in health and disease,41 our study has
employed metagenomic sequencing instead of 16 S
rRNA sequencing to extend the prior studies that
identified the enrichment of genera such as Klebsiella,
Enterococcus, and Bacteroides in septic patients and their
association with adverse clinical outcomes,11,42–46

providing higher-resolution species-level insights.
Beneficial bacteria such as C. clostridioforme and
F. prausnitzii, enriched in the non-septic patients, are
known for their anti-inflammatory properties.47,48 Septic
patients exhibited reduced gut microbiota diversity,
which has been associated with worse outcomes and
decreased survival rates.49 In our study, B. salyersiae and
E. faecium were enriched in sepsis. Among them,
E. faecium is a pathogenic bacterium associated with
critical illness,50 while B. salyersiae, a commensal gut
bacterium capable of degrading polysaccharides,51 also
exhibits opportunistic pathogenicity under certain con-
ditions, such as ulcerative colitis.52 In addition,
B. salyersiae was found in the bronchoalveolar lavage
specimens from patients with sepsis and acute respira-
tory distress syndrome, where it was positively corre-
lated with Tumor necrosis factor-α,53 and inversely
associated with T lymphocytes and natural killer cells.23

Furthermore, abnormal accumulation of B. salyersiae
may contribute to the development of diffuse large B-
cell lymphoma and peripheral immune dysfunction.23

While prior studies have reported associations between
B. salyersiae and immune function, its relationship with
sepsis has been rarely addressed. Our analysis employs
random forest modeling, which allowed us to identify
key microbiota species, immunophenotype, clinical
factor, and their relationships with sepsis outcomes
which can guide clinical decisions in sepsis and improve
patient outcomes.14

Although our study is the largest to date integrating
immunome and gut microbiome analysis in sepsis
research, it is still limited in sample size. Future studies
with larger sample sizes are needed to validate the bio-
markers identified for stratifying sepsis risk. In addi-
tion, incorporating multi-center samples will enhance
the generalizability of our findings. The collection of
fecal samples from ICU patients presented practical
challenges due to altered bowel movements in critical
illness; future studies might benefit from alternative
sampling methods such as anal swabs to better charac-
terize intestinal dysbiosis. Additionally, while our find-
ings suggest important associations between gut
microbiota and immune phenotypes, the causal re-
lationships between these factors and their roles in
sepsis pathogenesis may be further investigated. Future
longitudinal studies may also build upon the foundation
of this cross-sectional research to further elucidate the
temporal dynamics of immune responses in sepsis
development and prognosis.

In conclusion, our study identified distinct patterns
of immune dysregulation in sepsis through compre-
hensive immunophenotyping and metagenomic
www.thelancet.com Vol 113 March, 2025
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analysis. We demonstrated that NK cells from the innate
immunity system, when combined with the appropriate
gut B. salyersiae abundance and circulating CRP levels,
serve as valuable diagnostic markers for sepsis. In
addition, specific T cell subsets from adaptive immunity
correlated with disease severity and predicted patient
outcomes when integrated with clinical scores. By
demonstrating the complementary role of immune
markers to traditional clinical assessments and the
interaction between gut microbiota and immune phe-
notypes, we provide new insights into sepsis pathogen-
esis and propose more precise diagnostic and
prognostic strategies in sepsis management.
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